放疗技术新进展
2018-03-30  0评论  1387浏览
放射肿瘤学由于高科技的发展已取得了许多理论上和技术上的突破,下面简要介绍放射生物科学,生物等效剂量超分割以及三维调强立体定向放射等技术的进展。 
放射生物学进展 
1)放射生物学的进展以线性--平方模式(Linear-Quadratic model)来解释放射生物学中的反应,以α/β系数来预测放射治疗剂量时间疗效关系,为放射生物学开辟了较为广阔的天地。近年来深入研究了细胞周期,即增殖期(G1-S-G2-M)和静止期(G0)的关系,为此提出了4个R即是修复(Repair),再氧化(Reoxygenation)和再分布(Redistribution)和再增殖(Regeneration)作为指导放射生物中克服乏氧等问题的研究要点,放射生物学推进到目的明确,针对性强的有效研究中去。近年来在研究细胞修复和增殖中又进一步了解到细胞凋亡(Apoptosis)和细胞分裂(Mitosis)的关系后,提出了凋亡指数(AI)与分裂指数(MI)(Apoptosisindex/Mitosisindex)比来予测放射敏感性和预后,指导调发自发性凋亡和平衡各种细胞的抗放、耐药(即Resistant RT和Resistant Chemotherapy),并由此估计复发,研究增敏,开发出超分割、加速超分割治疗等新技术,从而取得了科研及临床的许多新结果,加深了理论深度,开拓出新的领域,推动了放射治疗学的进展。
2)DNA和染色体研究 
为了测定肿瘤细胞本身辐射损伤,染色体中DNA链中的断裂(单链断裂SSB和双链断裂DSB),其断裂的准确位置,以及在这个过程中,肿瘤细胞如何进行修复,也观察到错误修复,以及无修复等对细胞的子代产生的决定作用。目前临床用对DNA调节机制的多种原理表达进行测试,可以分清那些是有意义的表达,那些是灵敏的表达,建立对临床治疗,预后评估的方法学和化验项目,指导放射生物学,放射物理学,临床放射肿瘤学的发展,使更有目的性,针对性和实用性。放射生物学从细胞水平已进入到大分子水平,从纯实验室过渡到临床初步应用阶段〔5,6〕。 
放射物理技术的进展 
1)立体定向治疗的实现 
基于电子计算机精度提高,双螺旋CT及高清晰度MRI出现,因此立体定向治疗应运而生,目前使用的γ-刀,从某种意义来说是一个立体定向放射手术过程(Sterol Radiation Surgery,SRS),它通过聚焦,等中心照准,于单次短时间或多次较长时间给予肿瘤超常规致死量治疗,达到摧毁瘤区细胞的目的,γ刀利用约30~200个钴源,在等中心条件下,从立体不同方向位置,在短距离内对细小肿瘤(或良性肿瘤,先天畸形等病灶,一般约1~2cmΦ)进行一次或多次照射,给予总剂量超过肿瘤及正常组织耐受量,用准确聚焦的办法使多个60Co源的剂量集中在靶区,分射束聚焦使周围正常组织受量仍在可能的耐受量中,由于采用电脑、CT,以及准确的立体设计定位,因而射野边界锐利可达±2mm以下,确保了非瘤区正常组织安全。应用于脑部的良性小肿瘤和先天性畸形效果尤佳,应用于脑干等生命禁区也取得了效果。但目前许多单位滥用,不严格控制适应症,因此造成了许多后遗症和并发症,使γ-刀的应用与初始设计原意偏离了轨道。 
此外,采用X刀(加速器)其应用电脑进行定位,聚焦等技术与γ刀原理相近,它除应用在头部肿瘤(如γ-刀)外,还应用在胸、腹盆等区域,应用范围比γ-刀广,应用效率较γ-刀要好。但立体照射(γ,X刀)技术应用中还存在许多问题,如放射生物学中的远期并发症,肿瘤的局部控制问题,远处转移仍未得到解决,因此想单靠一种这样机器是不能完全解决放射治疗的所有问题的。
2)三维适形放疗技术 
3-Dimension Conformal Radiation Therapy(即3-D CRT),其理论和物理技术基础与γ-刀等大同小异。但近年来特别强调的由平面二维定位,过渡到立体三维定位,与其相适应的光栅(遮光器)能够随射野改变而适形变化,达到准确适应肿瘤形状,使高剂量区分布形状在三维方向上与病变靶区完全一致,适形和三维是一个问题的两个方面,没有三维定位则适形也无从实现,没有多叶光栅(multiple leaves collimator),以及其随体位、肿瘤空间形态改变的适形照射也是一句空话。近年来开发出了立体定向X-刀电子计算机芯片设计程序突破了芯片对多叶光栅同步控制的适形变化部分,使3DCRT就已经步入了实用阶段,它可以通过常规分割,超分割,加速超分割,以及低速分割(Hypo fraction)等治疗方式来完成目前一般的常规放疗机(加速器,钴60机,γ-刀等)所不能完成的任务。无论其精确度、疗效,并发症均优于常规治疗机,国外一些人士称它为21世纪的常规放疗机。它使射野(单个、多个、运动、固定)形状与病变靶区的投影保持一致,多叶光栅对射野内诸点的输出剂量率按要求不断进行调整。 
3)调强适形放疗(Intensity Modulation Radiation Therapy-IMRT) 
这种技术目前仍已应用于临床,但国内外同行评价这种技术为21世纪放射治疗技术的主流。三维适形治疗(3-DCRT)所采用的同步可控多叶光栅,三维适形定位这种技术在IMRT中已成为基础技术。但其不同之处在于采用⑴逆向算法设计(Inversereckon Planning),这是IMRT除三维适形之外,为更精确起见所插入的必要步骤,它不仅正面方向的精确剂量计算,而且从逆方向算法来进行验证和审核,使用的高能X线,电子束、质子束等放射源,其射野绕人体用连续或固定集束,在旋转照射方向上达到更精确边界,因而它可以提高强度,达到适应肿瘤形状高输出剂量,三维数字图象重建(3DRR-3Dimension Reckon-Picture Reconstruction)功能,使三维图象中靶区等重要器官与图象吻合,剂量分布合适与否一目了然。 
a、有冠状、矢状、横断面的图象及剂量分布,还要能给出任意斜切面的图形及剂量分布,并随时可以显示给治疗人员,设计人员以及医生,它使视野方向的观视(BEV Beam-field Equation Vision)和医生反方向的观视(REV-Reaction Equation Vision)都成一致。 
b、模拟选择--在安排和设计射野时必须具有模拟类似常规模拟定位机射野的选择功能,包括准直器种类,(独立式、对称式)和多叶准直器即多叶光阑(LMC-Multiple leaves collimator),大小,放置射野档块和楔形过滤板等。 
c、治疗方案确定后,将各项条件输入CT模拟治疗(CT-Simulator),CT的模拟机应能接受上述条件。 
d、验证,择优方案选择后将信息转至治疗机电脑按上述条件运转,将各种附加条件如机架,准直器,床移动范围,射野大小,多叶光栅叶片运动及调整机匹配,这样整个过程就完成了。所谓调强适形放射技术就是从固定视野上的物理条件出发,把其准确性调至最高,将平面二维准确调至三维更准确方向,在三维补偿照准方面调至最精确,给到最大足量。从诊断、设计实施和多种补偿手段,各种运动射束的调强,使射野边界锐利,界限明确,达到最高限度的准确定位,最高准确剂量达到靶,高准确度执行预定计划,从而可以超过SRT及SRS的准确治疗方式,又可克服SRT及SRS的明显缺陷。
4)图像导引放射治疗-IGRT 
这是目前肿瘤放射治疗的发展的方向。其目的是在同一台治疗设备上做到精确计划(TPS)、精确定位(IGRT)、精确治疗(IMRT)三原则。目前瑞典ELEKTA、美国的VARIAN都具备这方面的能力。中国的医用加速器与此上有一定的差距,但是相信很快也能赶上并超过他们。
3、临床实用放疗技术进展 1)生物等效剂量(BED-Biological Equralent Dose) 
为了使肿瘤中心物理剂量与其他点的剂量差异(即剂量不均质性);以及物理剂量与生物效应之差异(也称为生物效应差异),这双重差异的结果能最后表达出来,在放射生物学上对这种双重差异效应统一,称之为生物等剂量(BED),过去临床医生仅凭经验及临床效果来猜测,它要达到对肿瘤区的根治剂量,又要对周围正常组织的保护,为了使BED应用于临床实际,以往L-Q模式α/β比能够大致表达这种内容。在低剂量区起始段为细胞杀灭与剂量成线性关系(e-ad)为单靶区域α击中;随着剂量增加存活曲线向下弯曲,此时细胞存活和剂量成平方关系(e-βd2),通过线性(α/β值约为10Gy)。利用这个理论及实验室结果,使治疗中生物等效剂量更接近临床治疗中实际,以往在治疗中应用的常规分割(每周五次,每天一次,每次剂量约2Gy)这个矢量对肿瘤的控制,它的生物等效剂量比较好,但不理想。因此为了接近肿瘤实际故又提出了肿瘤可控机率TCP(Tumor Contral Probability)和不可控机率NTCP(Non Tumor Control Probability),以TCP/NTCP数值来衡量BED和肿瘤治疗机率。
2)超分割(HF,Hyperfraction),加速超分割,(AF,Acceleated Hyperfraction)和低分割(Hypofraction)

要回复讨论请先登录注册